OCTOBER 2023 EBS 142 GENERAL PHYSICS THEORY I 50 MINUTES

Candidate's Index Number	
Signature:	

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) FIRST YEAR, END-OF-SECOND SEMESTER EXAMINATION, SEPT./OCT. 2023

3RD OCTOBER 2023

2.

GENERAL PHYSICS THEORY I

3:50 PM - 4:40 PM

SECTION B (30 MARKS)

Answer any two questions from this Section.

Please, note that if you answer more than two questions, only the first two will be marked.

- 1. a. Give one example each of a scalar and a vector quantity and state their units. (2 marks)
 - b. Explain why an object weighs about six times heavier on the surface of the Earth than on the surface of the Moon. (4 marks)
 - c. Two forces $A = (8 \text{ N}, 065^{\circ})$ and $B = (12 \text{ N}, 200^{\circ})$ act at a point on an object. Find the magnitude and direction of the resultant due to A and B. (9 marks)
- a. State Newton's second law of motion.

(2 marks)

b. Sketch a velocity-time graph for a tennis ball which bounces twice from the ground.

(5 marks)

- c. A ball of mass 50 g is thrown vertically upwards with a velocity of 20 ms⁻¹. Find the
 - i. maximum height reached

(3 marks)

ii. time taken to return to the thrower

(3 marks)

iii. potential energy of the ball half-way through its fall

(2 marks)

(Assume acceleration due to gravity $g = 10 \text{ ms}^{-2}$)

- 3.
- a. Define latent heat of vaporization.

(2 marks)

b. Describe conduction as a mode of heat transfer

(5 marks)

c. Heat energy is supplied to 800 g of water originally at 25°C until it boils away completely at 100°C. Calculate the amount of energy supplied. (8 marks)

[Specific heat capacity of water = $4200 \text{ Jkg}^{-1}\text{K}^{-1}$; specific latent heat of vaporisation = $2.26 \times 10^6 \text{ Jkg}^{-1}$]

- 4.
- a. Define temperature.

(2 marks)

b. State the thermometric property used in the design a thermocouple.

(2 marks)

- c. A steel rod 5.0 m long is heated from 20°C to 50°C. Determine the new length of the rod if the temperature coefficient of linear expansion for steel is 1.12 x 10⁻⁵ °C⁻¹. (7 marks)
- d. Explain how a bimetallic strip operates

(4 marks)